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and conformal invariance on the boundary of AdS3

I. Benkaddour, A. El Rhalami, E.H. Saidi

Lab/UFR High Energy Physics, Physics Department, Faculty of Science, Av. Ibn Battota, B.P. 1014, Rabat, Morocco

Received: 20 July 2000 /
Published online: 19 September 2001 – c© Springer-Verlag / Società Italiana di Fisica 2001

Abstract. Using recent results on strings on AdS3 ×Nd, where N is a d dimensional compact manifold, we
re-examine the derivation of the non-trivial extension of the (1+2)-dimensional-Poincaré algebra obtained
by Rausch de Traubenberg and Slupinsky. We show by explicit computation that this new extension is
a special kind of fractional supersymmetric algebra which may be derived from the deformation of the
conformal structure living on the boundary of AdS3. The two so(1, 2) Lorentz modules of spin ±1/k
used in building of the generalization of the (1 + 2) Poincaré algebra are re-interpreted in our analysis as
highest weight representations of the left and right Virasoro symmetries on the boundary of AdS3. We also
complete known results on 2d-fractional supersymmetry by using spectral flow of affine Kac–Moody and
superconformal symmetries. Finally we make preliminary comments on the trick of introducing F th roots
of g-modules to generalize the so(1, 2) result to higher rank Lie algebras g.

1 Introduction

Recently a non-trivial generalization of the (1+2)-dimen-
sional Poincaré algebra going beyond the standard super-
symmetric extension has been obtained in [1]. In addition
to the usual Poincaré generators, this extension, here re-
ferred to as the Rausch de Traubenberg–Slupinski algebra
(RdTS algebra for short), involves two kinds of conserved
charges Q±

s transforming as so(1, 2) Verma modules of
spin s = ±1/k; k ≥ 2. This construction is interesting first
because it goes beyond standard 2d-fractional supersym-
metry based on considering kth roots of the so(2) vec-
tor, and second because it gives a new algebraic struc-
ture which a priori is valid for higher rank Lie algebras
g where so(2) and so(1, 2) appear just as two special ex-
amples. In two dimensions where conformal invariance is
infinite we now know, by the help of conformal field theory
methods and techniques of complex analysis, how to deal
with objects of the type of the kth root of a so(2) vector.
For higher space-time dimensions however, computations
are in general difficult to perform except for some spe-
cial situations such as the problem we will study low and
where RdTS symmetry finds applications in low dimen-
sional physical systems.
In (1 + 2) dimensions, representations of the RdTS

extension of the so(1, 2) algebra have quantum states car-
rying fractional values of the spin and are expected to
play a particular role in the exploration of special fea-
tures of field theoretical models of (1 + 2)-dimensional
systems with boundaries. The idea of considering 3d sys-
tems with boundaries is crucial. It is motivated by the
fact that one can imagine that the RdTS so(1, 2) exten-

sion may naturally be linked to a 2d boundary confor-
mal field theory (BCFT) living on the boundary of the
space-time. From this view we expect that the RdTS con-
struction for so(1, 2) may be related to known results on
integrable deformations of 2d conformal invariance. Recall
that representations theory of conformal invariance in two
dimensions [2] predict naturally the existence of quantum
field operators generating states with exotic spins englob-
ing the so(1, 2) RdTS ones. It is then an interesting task
to check if there exists effectively any relation between
the RdTS generalization of Poincaré invariance in (1 + 2)
dimensions and known results on integrable deformations
of 2d CFT’s [3,4]. We expect that this relation really ex-
ists, and its determination may help in understanding the
behavior of physical bulk quantities near the boundary of
(1 + 2)-dimensional systems.
To study this problem we shall mainly work with AdS3

as the (1 + 2) space-time with boundary and use recent
results on strings propagating on AdS3 ×Nd, where Nd is
a d-dimensional compact manifold to be specified later on.
The analysis we will develop in this paper might also be
adapted to study some features of fractional quantum Hall
(FQH) effects [5,6]; in particular the understanding of the
correspondence between the bulk effective Chern–Simons
(CS) gauge theory of FQH droplets and the conformal
field theory living on its boundary [6,7].
The aim of this paper is to exhibit explicitly the link

between the RdTS analysis and 2d BCFT using recent re-
sults on D-brane physics on the (1+2)-dimensional anti-de
Sitter space AdS3 [8–10]. We first show that there exists
indeed a connection between the RdTS algebra and defor-
mations of 2d space-time BCFT. Then we establish the
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rule of correspondance between the two so(1, 2) Verma
modules, used in constructing the non-trivial extension of
the (1+2) Poincaré invariance, and primary Virasoro rep-
resentations of the full conformal algebra on the boundary
of AdS3. We show moreover that the RdTS supersymme-
try, although obtained using an unusual method, has in
fact the same origin as standard fractional supersymme-
try (FSS) [11–13]; see also [14,15]. Both FSS and RdTS
algebras are residual subsymmetries of conformal invari-
ance.
The presentation of this paper is as follows: In Sect. 2,

we review the basic ideas of FSS and RdTS supersymme-
try using the conformal field theoretical method for the
first and the algebraic approach for the second. We give
explicit calculations for the deformation of the C = 4/5
Potts model. In Sect. 3, we review the main lines of RdTS
analysis. We also introduce some useful tools for the study
of the link between the RdTS modules and highest weight
representations (HWR) of the Virasoro algebra. In Sect. 4,
we study the relation between RdTS supersymmetry and
2-dimensional conformal invariance. We show in particu-
lar that the two so(1, 2) modules considered in building
supersymmetry are just special HWRs of the conformal
invariance on the boundary of AdS3. In Sect. 5, we use
the spectral flow of 2d N = 2 and N = 4 superconformal
invariances to complete the study of Sect. 2 by giving a
new result on FSS. We also take the opportunity of us-
ing spectral flow of affine Kac–Moody symmetries to give
comments on the kth roots of the su(n) fundamental rep-
resentations used by RdTS in extending their result for
so(1, 2) for su(n). In Sects. 6 and 7 we give our results
and conclusions.

2 Fractional supersymmetry

RdTS fractional supersymmetry is a special generalization
of FSS living in two dimensions and considered in many
occasions in the past in connection with integrable defor-
mations of conformal invariance and representations of the
universal enveloping Uqsl(2) quantum ordinary and affine
symmetries [11,12,16,17]. Like for FSS, highest weight
representations of the RdTS algebra carry fractional val-
ues of the spin and obey more or less quite similar FSS
equations. We will show throughout this study that, up
to some details related to the number of dimensions of
space-time, RdTS fractional supersymmetry has indeed
the same origin as FSS. Both FSS and RdTS invariance
describe residual symmetries left after integrable defor-
mations of scale invariance in two dimensions. To better
understand the algebraic structure of FSS and RdTS su-
persymmetry we first propose to describe briefly the main
lines of 2d FSS one gets from integrable deformations of
conformal invariance. Then we give the RdTS extension
of the (1 + 2)-dimensional Poincaré invariance as derived
in [1].

2.1 2-dimensional FSS

FSS extends the usual Bose–Fermi symmetry in two di-
mensions; it exchanges bosons and quasiparticles (para-

fermions) of fractional spin instead of fermions. In addi-
tion to the energy momentum translation operator vector
P±, FSS is generated by conserved charges Qx and Q̄x
carrying fractional values of the spin x (x = l/k; 1 < l <
k mod[1]; k ≥ 2). These charge operators are remnant con-
stants of motion that survive after integrable deformations
of conformal invariance. There are various FSS algebras
depending on the conformal model one starts with. For
example, via the Zk parafermionic invariance of Zamolod-
chikov and Fateev (ZF) [18]; see also [19], a way to get FSS
algebras is as follows. First start from the ZF conformal
algebra generated by the energy momentum tensor T (z)
and the parafermionic currents Ψ q(z), q = 1, . . . k:

TΨ (z1)TΨ (z2) = cΨ/2z−4
12 + 2z

−2
12 T (z2)

+z−1
12 ∂T (z2) + . . . ,

Ψk(z1)Ψl(z2) = Ck+lk,l z
−2kl/N
12 {Ψk+l(z2) + . . .},

(k + l) < N,

Ψk(z1)Ψ+
k (z2) = C

N+k−l
k,N−l z

−2k(N−l)/N
12 {Ψk−l(z2) + . . .},

Ψk(z1)Ψ+
k (z2) = z

−2k(N−k)/N
12

×[1id + 2∆k/ckz212TΨ (z2) + . . .],
TΨ (z1)Ψk(z2) =

∆k
z212
Ψk(z2) +

1
z12
∂zΨk(z2) + . . . , (2.1)

where the parameters cΨ and Ck+lk,l are the central charges
and structure constants of the parafermionic algebra re-
spectively. The Ψq(z)’s and the Ψ̄q(z̄) have the conformal
weights ∆q = q(k − q)/k. Second, solve the following op-
erator equations:

P− =
∮
dzT (z),

P+ =
∮
dz̄T̄ (z̄), (2.2)

where T (z) and T̄ (z̄) are replaced by their expressions
in terms of the Ψ±(z)’s and the Ψ̄±(z̄); see (1). To solve
these equations, one has to specify the ZF parafermionic
primary representations since the mode expansions of the
Ψq’s and the Ψ̄q’s depend on the weight of the ZF primary
field operators Φpq .

Ψk(z1)Φqp(z2) =
∑
n∈Z

z
n−kp/N−k
12 Qk,p−n+ k(p+k)

N

Φqp(z2),

Ψ+
k (z1)Φ

q
p(z2) =

∑
n∈Z

z
n+kp/N−k
12 Q−k,p

−n− k(p+k)
N

Φqp(z2), (2.3)

where Qk,p−n+(k(p+k))/N and Q
−k,p
−n−(k(p+k))/N are the modes

of Ψk and Ψ+
k respectively, defined by

Qk,p−n+ k(p+k)
N

Φqp(z2) =
∮
dz1z

n+kp/N+k−1
12 Ψ(z1)Φqp(z2),

Q−k,p
−n− k(p+k)

N

Φqp(z2) =
∮
dz1z

n−kp/N+k−1
12 Ψ(z1)Φqp(z2).

(2.4)
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To illustrate how things work in practice let us consider
an example. The method we will present below applies to
all Zk parafermionic models as well as others such as the
symmetries due to Tye et al. [20,21].

2.2 Deformation of C = 4/5 Potts model

To fix the ideas, we consider the c = 4/5 critical Potts
model described by the following Z3 parafermionic invari-
ance. This is the leading non-trivial example having con-
stants of motion carrying fractional values of the spin. The
algebra governing the critical behavior of this model is:

Ψ±(z1)Ψ±(z2) ≈ −z−2/3
12 Ψ±(z2),

Ψ+(z1)Ψ−(z2) ≈ z
−4/3
12 [1 + 5/3z212T (z2)],

T (z1)Ψ±(z2) ≈ 2/3
z212
Ψ±(z2) +

1
z12
∂zΨ

±(z2),

T (z1)T (z2) = 2/5z−4
12 + 2z

−2
12 T (z2)

+z−1
12 ∂T (z2). (2.5)

Similar relations are valid for the Ψ̄±(z̄)’s. The ZF para-
fermionic currents Ψ± have a spin 2/3 and satisfy
([Ψ±(z)]+ = Ψ∓(z)).
The algebra (2.4) has three parafermionic highest

weight representations (PHWR)[Φqq]; q = 0, 1, 2, namely
the identity family I = [Φ0

0] of highest weight h0 = 0 and
two degenerate families [Φ1

1] and [Φ
2
2] of weights h1 = h2 =

1/15. Each one of these PHWRs is reducible into three Vi-
rasoro HWRs: (Φpq); p = q, p = q±2 (mod6). These field
operators which are rotated amongst others under the ac-
tion of the parafermionic currents as shown here:

Ψ∓×Φpq = Φp±2
q ,

Φp±6
q = Φpq , (2.6)

obey Virasoro and ZF primary conditions:

Ln|h〉 = 0, n > 0,
Q±

−n±(p±1)/3|h〉 = 0, n± (p± 1)/3 > 0, (2.7)

where the Ln Virasoro and the Q±
−n±(p±1)/3 ZF modes are

given by

Ln|Φqp〉 =
∮
dzzn+1T (z)Φqp(0)|0〉,

Q±
−n±(p±1)/3|Φqp〉 =

∮
dzzn±p/3Ψ±(z)Φqp(0)|0〉. (2.8)

Note that the mode expansion of the ZF currents depend
on the representation field operator on which they act.
This property is manifestly seen on the energies of the cre-
ation and annihilation operators Q±

−n±(p±1)/3 which de-
pend on the quantum number p of the ZF primary field
Φpq(z):

Ψ±(z1)Φpq(z2) =
∑

z
n−1∓p/3
12 Q±

−n±(p±1)/3Φ
p
q(z2), (2.9)

The ZF primary field operators Φpq(z) satisfy also braiding
properties of type

z∆12Φ1(z1)Φ2(z2) = z∆21Φ2(z2)Φ1(z1), (2.10)

where ∆ = ∆1 + ∆2 − ∆3; ∆1 and ∆2 are respectively
the conformal weights of the Φ1 and Φ2 field operators
while ∆3 is the weight of Φ3 fields operators arising when
computing the OPE, (2.10).
The second step in the derivation of FSS is to solve the

operator (2.2) expressing the 2d energy momentum vector
P± in terms of the ZF modes Q±

−n±(p±1)/3:

P− =
∮
dz
3
5
z−2/3(Ψ+(z)Ψ−(0)),

P+ =
∮
dz̄
3
5
z−2/3(Ψ̄+(z̄)Ψ̄−(0)), (2.11)

where we expressed T (z) and T̄ (z̄) in terms of the Ψ±(z)’s
and the Ψ̄±(z̄) as given by (2.4). The solution of (2.9)
involves three pairs of doublets of the charge operators(
Q±

−1/(3), Q̄
±
1/3

)
,

(
Q±

−2/3, Q̄
±
2/3

)
and (Q0

±, Q̄±
0 ). Using

the primary highest weight conditions (2.7), one can check
by explicit computation that the Q, Q̄, P− and P+ charge
operators generate the following algebra:

P = Q+
−1/3Q

+
0 Q

+
−2/3Π0 +Q+

−2/3Q
+
−1/3Q

+
0 Π1

+Q+
0 Q

+
−2/3Q

+
−1/3Π−1,

[P±, Q−x] = 0; x = 0, 1/3, 2/3,
P̄ = Q̄+

−1/3Q̄
+
0 Q̄

+
−2/3Π̄0 + Q̄+

−2/3Q̄
+
−1/3Q̄

+
0 Π̄1

+Q̄+
0 Q̄

+
−2/3Q̄

+
−1/3Π̄−1,

[P±, Q̄+x] = 0. (2.12)

In these equations the Πq’s and Π̄q’s are projector op-
erators on the qth ZF primary state [Φqq×Φ̄qq]. The al-
gebra (2.12) may also be obtained by analysing the en-
ergy spectrum of the mode operators Q±

−n±(p±1)/3 and
Q̄±

−n±(p±1)/3, n integer. The Q
±
−n±(p±1)/3’s and

Q̄±
−n±(p±1)/3’s, which depend on the p charge, act only on

the conformal representation |Φqp〉. This property may be
interpreted to mean that, as expected for the |Φqp〉 family,
the action of the Q±

−n±(p±1)/3’s kills all states |Φpr〉 with r
different from q. For q = 0 for example, the non-vanishing
actions of Q±

−x and Q̄
±
−x, x = 0, 1/3, 2/3 on the states |s, p〉

of spin s, 0≤s≤1, and charge p read
Q±

−2/3|0, 0〉 = |2/3, 0〉,
Q+

0 |2/3,+2〉 = |2/3,−2〉,
Q−

0 |2/3,−2〉 = |2/3,+2〉, (2.13)

Q+
−1/3|2/3,−2〉 = |1, 0〉,

Q−
−1/3|2/3,+2〉 = |1, 0〉, (2.14)

and similar equations for the antiholomorphic sector.
From these equations as well as the expansion (2.3) and
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(2.4) of the ZF currents, one sees that Q±
−1/3 and Q

±
0 can-

not act directly on the state |0, 0〉. Similarly Q±
−2/3 cannot

operate directly on |2/3,±2〉. This result gives an explicit
argument showing that FSS should be generated by more
than one Q and Q̄ operators as it was naively used in ear-
lier physical literature on FSS. It shows moreover that not
all the Q±

−x’s are independent since we have

Q−
−1/3 = Q

+
−1/3Q

+
0 ,

Q+
−1/3 = Q

−
0 Q

−
−1/3,

Q−
−2/3 = Q

+
0 Q

−
−2/3,

Q+
−2/3 = Q

−
−2/3Q

−
0 . (2.15)

Similar expressions may be written down for the antiholo-
morphic sector. Putting back these relations into (2.12),
we find the following linearized algebra:

2P−1 = {Q+
−2/3, Q

−
−1/3}+ {Q+

−1/3, Q
−
−2/3},

0 = {Q±
−1/3, Q

±
−1/3} = {Q±

−2/3, Q
±
−2/3}. (2.16)

We shall return to this linearized realization of FSS in
Sect. 5 when we discuss the spectral flow of N = 2 and
N = 4 superconformal invariance in two dimensions,
where a similar result will be obtained by using special
choices of the parameter of the flow.

3 RdTS supersymmetry

In this section we review briefly the derivation of the RdTS
extension of the (1 + 2)-dimensional Poincaré invariance.
We also initiate the study of a field realization of RdTS
supersymmetry which we develop further in the next sec-
tion. In this regard we would like to note that as far as
the SO(1, 2) group is concerned, we will encounter in our
analysis various kinds of SO(1, 2) symmetries with differ-
ent physical interpretations. In addition to the SO(1, 2)
Lorentz invariance of the (1 + 2)-dimensional space-time
considered in [1], we will handle four SO(1, 2) invariances
which can be classified:
(1) Two SO(1, 2)’s given by the zero mode subgroup

product SO(1, 2)× ¯SO(1, 2) associated to sok(1, 2)×
¯sok(1, 2) affine Kac–Moody invariance to be studied

in Sect. 4. This subsymmetry will be realized by using
the usual Sl(2, R) ∼ SO(1, 2) Wakimoto field theoret-
ical representation [22].

(2) Two other SO(1, 2) subsymmetries associated to the
non-anomalous subalgebras of the left and right Vira-
soro symmetries of some 2-dimensional BCFT of AdS3
to be specified later on.

To start, consider the Poincaré symmetry in (1+2) dimen-
sions generated by the space-time translations Pµ and the
Lorentz rotations Jα satisfying altogether the following
closed commutation relations:

[Jα, Pβ ] = iεαβγηγδPδ,

[Jα, Jβ ] = iεαβγηγδJδ,
[Pµ, Pν ] = 0. (3.1)

In these equations, ηαβ = diag(1,−1,−1) is the (1 + 2)
Minkowski metric and εαβγ is the completely antisymmet-
ric Levi-Civita tensor such that ε012 = 1. A convenient
way to handle (3.1) is to work with an equivalent for-
mulation using the following Cartan basis of generators
P∓ = P1±iP2 and J∓ = J1±iJ2. In this basis (3.1) read

[J+, J−] = −2J0,

[J0, J±] = ±J±,
[J±, P∓] = ±P0,

[J+, P+] = [J−, P−] = 0,
[J0, P0] = [P±, P∓] = 0. (3.2)

The algebra (3.1) and (3.2) has two Casimir operators,
P 2 = P0

2 − 1/2(P+P− + P−P+) and P.J = P0J0 − 1/2
(P+J− + P−J+). When acting on highest weight states
of mass m and spin s, the eigenvalues of these operators
are m2 and ms respectively. For a given s, one distin-
guishes two classes of irreducible representations: massive
and massless representations. To build the so(1, 2) mas-
sive representations, it is convenient to go to the rest
frame where the momentum vector Pµ is (m, 0, 0) and
the SO(1, 2) group reduces to its abelian SO(2) little sub-
group generated by J0 (J± = 0). In this case, massive irre-
ducible representations are 1-dimensional and are param-
eterized by a real parameter. For the full SO(1, 2) group
however, the representations are either finite dimensional
for |s| ∈ Z+/2 or infinite dimensional otherwise.
Given a primary state |s〉 of spin s, and using the

above mentioned SO(1, 2) group theoretical properties,
one may construct in general two representations HWR(I)
and HWR(II) out of this state |s〉. The first representation
HWR(I) is a highest weight representation given by

J0|s〉 = s|s〉,
J−|s〉 = 0,

|s, n〉 =
√

Γ (2s)
Γ (2s+ n)Γ (n+ 1)

(J+)n|s〉, n≥1,

J0|s, n〉 = (s+ n)|s, n〉,
J+|s, n〉 =

√
(2s+ n)(n+ 1)|s, n+ 1〉,

J−|s, n〉 =
√
(2s+ n− 1)n|s, n− 1〉. (3.3)

The second representation, to which we refer as HWR(II),
is a lowest weight representation defined by

J̄0|s̄〉 = −s|s̄〉,
J̄+|s̄〉 = 0,

|s̄, n〉 = (−)n
√

Γ (2s)
Γ (2s+ n)Γ (n+ 1)

(J̄−)n|s̄〉,

J̄0|s̄, n〉 = −(s+ n)|s̄, n〉,
J̄+|s̄, n〉 = −

√
(2s+ n− 1)n|s̄, n+ 1〉. (3.4)

Note that the generators J̄0,± and the representations
states |s̄〉 of the second module carry a bar index. This
is a conventional notation which will be justified later
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on. To fix the ideas, HWR(I) will be identified in Sects. 6
and 7 with a left Virasoro Verma module and HWR(II)
will be interpret as a right Virasoro one. Note also that
both HWR(I) and HWR(II) representation have the same
so(1, 2) Casimir Cs= s(s− 1), s < 0. For s ∈ Z−/2, these
representations are finite dimensional and their dimension
is (2|s|+ 1). For generic real values of s, the dimension of
the representations is however infinite. If one chooses a
fractional value of s, say s = −1/k, each of the two repre-
sentations (3.3) and (3.4) splits a priori into two isomor-
phic representations respectively denoted as D+

±1/k and
D−

±1/k. This degeneracy is due to the redundancy in choos-
ing the spin structure of (−2/k)1/2 which can be taken
either as +i(2/k)1/2 or −i(2/k)1/2. These representations
are not independent since they are related by conjuga-
tions; this is why we shall use hereafter the choice of [1]
by considering only D+

−1/k and D
−
−1/k. In this case the two

representation generators J0,± and J̄0,± are related by

J̄0,∓ = (J0,±)∗. (3.5)

Furthermore, taking the tensor product of the primary
states |s〉 and |s̄〉 of the two so(1, 2) modules HWR(I) and
HWR(II) and using (3.3) and (3.4), it is straightforward
to check that it behaves like a scalar under the full charge
operator J0 × 1d + 1d × J̄0 which we denote simply as
J0 + J̄0:

(J0 + J̄0)|s〉 ⊗ |s̄〉 = 0. (3.6)

Equation (3.6) is a familiar relation in the study of primary
states of the Virasoro algebra. This equation together with
the mode operators Jn− and J̄

m
+ which act on |s〉 ⊗ |s̄〉 by

(J−)n|s〉 ⊗ |s̄〉 = 0, n≥1,
(J̄+)m|s〉 ⊗ |s̄〉 = 0, m≥1, (3.7)

define a highest weight state which looks like a Virasoro
primary state of spin 2s and scale dimension ∆ = 0. We
will show later on when we study the primary field repre-
sentation of the 2d BCFT of a string propagating on the
AdS3 background, that (3.6) and (3.7) indeed correspond
to

(L0 − L̄0)Φh,h̄(0, 0)|0〉 = (h− h̄)Φh,h̄(0, 0)|0〉,
(L0 + L̄0)Φh,h̄(0, 0)|0〉 = (h+ h̄)Φh,h̄(0, 0)|0〉,

LnΦh,h̄(0, 0)|0〉 = 0, n≥1,
L̄mΦh,h̄(0, 0)|0〉 = 0, m≥1, (3.8)

where Ln and L̄m are respectively the usual left and right
Virasoro modes and φh,h̄(z, z̄) is a primary conformal field
representation of conformal scale h+h̄ and conformal spin
h− h̄. This property, which gives the connection between
RdTS supersymmetry and conformal invariance, will be
made explicit in detail when we discuss HWRs of the con-
formal symmetry on the boundary of AdS3. The primary
so(1, 2) highest weight states |s〉 and |s̄〉 (3.3) and (3.4)
are respectively in one to one correspondence with the
left Virasoro primary state Φh(0)|0〉 = |h〉 and the right
Virasoro primary one Φh̄(0)|0〉 = |h̄〉.

On the other hand, if we respectively associate to
HWR(I) and HWR(II) the mode operators Q+

s+n = Qs+n
and Q−

−s−n = Q̄s+n and using SO(1, 2) tensor product
properties, one may build, under some assumptions, an
extension S of the so(1, 2) algebra going beyond the stan-
dard supersymmetric one. To do so, note first that the
system J0, J+,J− and Qs+n obey the following commu-
tation relations (s = −1/k):

[J0, Qs+n] = (s+ n)Qs+n,

[J+, Qs+n] =
√
(2s+ n)(n+ 1)Qs+n+1,

[J−, Qs+n] =
√
(2s+ n− 1)nQs+n−1. (3.9)

Similarly we have for the antiholomorphic sector:

[J̄0, Q̄s+n] = −(s+ n)Q̄s+n,
[J̄+, Q̄s+n] = −

√
(2s+ n− 1)nQ̄s+n−1,

[J̄−, Q̄s+n] = −
√
(2s+ n)(n+ 1)Q̄s+n+1. (3.10)

To close these commutations relations with the Qs’s
through a kth order product one should fulfil some con-
straints.
(1) Tthe generalized algebra S we are looking for should
be a generalization of what is known in two dimensions,
i.e. a generalization of FSS.
(2) When the charge operator Qs+n goes around other,
say Qs+m, it picks up a phase Φ = 2iπ/k; i.e,

Qs+nQs+m = e±2iπsQs+mQs+n + . . . , s = −1
k
, (3.11)

where the dots refer for possible extra charge operators of
total J0 eigenvalue (2s+n+m). Equation (3.11) shows also
that the algebra we are looking for has a Zk graduation.
Under this discrete symmetry, Qs+n carries a +1 (modk)
charge while the P0,± energy momentum components have
a zero charge modk.
(3) The generalized algebra S should split into a bosonic
B part and an anyonic A part and may be written as
S = ⊕k−1

r=0Ar = B ⊕k−1
r=1Ar. Since AnAm ⊂ A(n+m) (modk)

one has

{Ar. . .Ar}k ⊂ B,

[B,A] ⊂ A,

[B,B] ⊂ B. (3.12)

In these equations, {Ar. . .Ar}k means the complete sym-
metrization of the k anyonic operators Ar and is defined
as

{Asr
. . .Asr

}k =
1
k!

∑
σ∈Σ

(Asσ(1) . . .Asσ(k)), (3.13)

where the sum is taken over the k elements of the permu-
tation group {1, . . ., k}.
(4) The algebra S should obey generalized Jacobi identi-
ties. In particular we should have

adB{As1 . . .Ask
} = 0, (3.14)
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where B stands for the bosonic generators J0,± or P0,±
of the Poincaré algebra. Using (3.12) to write {Ar. . .Ar}k
as αµPµ + βµJµ where α and β are real constants; then
putting this back into the above relation we find that
{Ar. . .Ar}k is proportional to Pµ only. In other words,
βµ should be equal to zero; a property which is easily seen
by taking B = Pµ in (3.14). Put differently the symmetric
product of the D±

s , denoted hereafter as S
k[D±

s ], contains
the space-time vector representation D1 of so(1, 2) and so
the primitive charge operators Q−1/k and Q̄1/k obey

[J0, (Q−1/k)k] = −(Q−1/k)k∼P−,

[J−, (Q−1/k)k] = 0. (3.15)

Similarly we have

[J̄0, (Q̄1/k)k] = (Q̄1/k)k∼P+,

[J̄+, (Q̄1/k)k] = 0. (3.16)

Moreover, acting on (Q−1/k)k by adJn+ and on (Q̄1/k)k by
adJ̄n+, one obtains

adJ+(Q−1/k)k ∼ P0,

adJ̄−(Q̄1/k)k ∼ P0,

ad2J+(Q−1/k)k ∼ P−,

ad2J̄−(Q̄1/k)k ∼ P+. (3.17)

In summary, starting from the so(1, 2) Lorentz algebra
(3.1) and (3.2) and the two Verma modules HWR(I) and
HWR(II) (3.3) and (3.4), one may build the following new
extended symmetry:

P∓ = {Q±
− 1

k

, Q±
− 1

k

, . . . , Q±
− 1

k

}k,

±i
√
2
k
P0 =

{
Q±

− 1
k

, . . . , Q±
− 1

k

, Q±
1− 1

k

}
k
,

P± = −(k − 1)
{
Q±

− 1
k

, . . . , Q±
− 1

k

, Q±
1− 1

k

, Q±
1− 1

k

}
k

±i√k − 2
{
Q±

− 1
k

, . . . , Q±
− 1

k

, Q±
1− 1

k

, Q±
2− 1

k

}
k
,

0 =
[
J±,

[
J±,

[
J±,

(
Q±

− 1
k

)k]]]
. (3.18)

Equation (3.18) defines what we have been referring to
as the RdTS algebra. For more details on this algebraic
structure, see [1,23].

4 Links with BCFT on ∂AdS3

Here we would like to answer the question raised in the
introduction concerning the link between RdTS supersym-
metry and 2-dimensional conformal invariance. We have
anticipated on the nature of this link by saying that RdST
supersymmetry is expected to arise from appropriate de-
formations of 2-dimensional CFT’s on the boundary of
AdS3. The appearance of the AdS3 space in this analysis

is due to the fact that this geometry has many relevant
features for our present study. We give hereafter two use-
ful properties regarding the space-time SO(1, 2) Lorentz
group:
(a) In its euclidean representation, AdS3 has an SO(1, 3)

isometry group containing as a subgroup the SO(1, 2)
Lorentz symmetry of the (1 + 2) space-time we are
interested in.

(b) The 2-dimensional AdS3 boundary space may be re-
alized as a 2-sphere on which may live boundary con-
formal field theories, which themselves have so(1, 2)
projective subsymmetries that can be related to the
above mentioned so(1, 2) Lorentz group.
Starting from these observations we want to show that

the two so(1,2) modules HWR(I) and HWR(II), consid-
ered in the building of RdTS supersymmetry, are just spe-
cial representations of the AdS3 BCFT. To prove this rela-
tion in a comprehensive manner, let us first review briefly
some elements of the AdS3 geometry. The AdS3 space
is given by the hyperbolic coset manifold Sl(2, C)/SU(2)
which may be thought of as the 3-dimensional hypersur-
face H3

+,

−X0
2 +X1

2 +X2
2 +X3

2 = −l2, (4.1)

embedded in flat R1,3 with local coordinates X0, X1, X2,
X3. This hypersurface describes a space with a constant
negative curvature (−1/l2). The parameter l is chosen to
be quantized in terms of the ls fundamental string length
units; i.e., l = ls×k where k is an integer to be interpreted
later on as the Kac–Moody level of the sok(1, 2) affine
symmetry. To study the field theory on the boundary of
AdS3, it is convenient to introduce the following set of
local coordinates of AdS3:

φ = log(X0 +X3)/l,

γ =
X2 + iX0

X0 + iX3
,

γ̄ =
X2 − iX1

X0 + iX3
. (4.2)

An equivalent description of the hypersurface is

γ =
r√

l2 + r2
e−τ+iθ,

γ̄ =
r√

l2 + r2
e−τ−iθ,

φ = τ + 1/2 log(1 + r2/l2),

r = leφ
√
γγ̄,

τ = φ− 1/2 log(1 + e2φγγ̄),
θ =

1
2i
log(γ/γ̄), (4.3)

where we have used the change of variables

X0 = X0(r, τ) =
√
l2 + r2 cosh τ,

X3 = X3(r, τ) =
√
l2 + r2 sinh τ,

X1 = X1(r, θ) = r sin θ,
X2 = X2(r, θ) = r cos θ. (4.4)
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In the coordinates (φ, γ, γ̄), the metric of H+
3 reads

ds2 = k(dΦ2 + e2Φdγdγ̄). (4.5)

Note that in the (φ, γ, γ̄) frame, the boundary of the eu-
clidean AdS3 corresponds to taking the field Φ to infinity.
As shown in (4.3) and (4.4), this is a 2-sphere which is
locally isomorphic to the complex plane parameterized by
(γ, γ̄).
Quantum field theory on the AdS3 space is very special

and has very remarkable features, governed by the Malda-
cena correspondence in the zero slope limit of string theory
[24]. On this space it has been shown that bulk correlations
functions of quantum fields find natural interpretations in
the conformal field theory on the boundary of AdS3 [9]. In
algebraic language, this correspondence transforms world
sheet symmetries of strings on AdS3 into space-time in-
finite dimensional invariances on the boundary of AdS3.
In what follows we shall review some useful properties of
strings on AdS3 and ∂AdS3.

4.1 AdS3–CFT correspondence

Strings propagating on the AdS3 background are involved
in the study of supersymmetric gauge theories with eight
supercharges; in particular in the understanding of the
Higgs and Coulomb branches near the moduli space sin-
gularity [25]. Strings on AdS3 have rich symmetries; some
of these turn out to be related to the problem we are study-
ing. These symmetries, which may be classified into WS
symmetries and space-time invariances, carry all relevent
information one needs to know about the string dynam-
ics on AdS3. In what follows we want to give some use-
ful relations regarding these two classes of symmetries.
To work out explicit field theoretical realizations of these
symmetries, we start by recalling that in the presence of
the Neveu–Schwarz Bµν field with euclidean world sheet
parameterized by (z, z̄), the dynamics of the bosonic string
on AdS3 is described by the following classical lagrangian:

L = k[∂Φ∂̄Φ+ e2Φ∂γ∂γ̄]. (4.6)

In this equation ∂ and ∂̄ stand for derivatives with re-
spect to z and z̄, respectively. Introducing the two aux-
iliary variables β and β̄, the above equation may be put
into the following convenient form:

L
′
= k2(∂Φ∂̄Φ+ β∂̄γ + β̄∂γ̄ − e−2Φββ̄). (4.7)

The equations of motion of the various fields one gets from
(4.7) read

∂∂̄Φ− 2ββ̄e−2Φ = 0,
∂̄γ − βe−2Φ = 0,
∂γ̄ − β̄e−2Φ = 0,

∂β̄ = ∂̄β = 0. (4.8)

String dynamics on the boundary of AdS3 is obtained from
the previous bulk equations by taking the limit where Φ

goes to infinity. This gives

∂∂̄Φ = 0,
∂̄γ = ∂γ̄ = 0,
∂β̄ = ∂̄β = 0. (4.9)

The WS fields Φ, γ and γ̄, which had general expressions
in the bulk, become now holomorphic on the boundary
of AdS3 and describe a BCFT. Note that consistency of
quantum mechanics of the string propagating in space-
time requires that the target space should be AdS3×N ,
where N is a (3 + n)-dimensional compact manifold. To
fix the ideas, N may be thought of as S3×Tn with n = 20
for the bosonic string and n = 4 for superstrings. We shall
consider hereafter both string and superstring cases. Given
the large number of relations one may write down, we shall
use however a strategy in which we give the strictly neces-
sary results. Thus our plan in what follows is: First, we de-
scribe some algebraic features of the WS invariance; then
we make a pause to give a complement on FSS using the
spectral flow of N = 2 and N = 4 conformal invariance,
after which we return to complete space-time symmetries
on the boundary of AdS3, and finally we give our results.

4.2 WS symmetries

World sheet invariances include affine Kac–Moody, Vira-
soro symmetries and their extensions. For a bosonic string
propagating on AdS3×S3×T 20, we have the following:

A Three kinds of WS affine Kac–Moody invariances

(a) A level (k−2) sl(2)× ¯sl(2) invariance coming from the
string propagation on AdS3. This invariance is generated
by the conserved currents Jqsl(2) and J̄

q
sl(2); q = 0,±1. In

terms of the WS fields Φ, γ, γ̄, β and β̄ of (4.7), the field
theoretical realization of these currents is given by the
Wakimoto representation:

J−(z) = β(z),

J+(z) = βγ2 +
√
2(k − 2)γ∂Φ+ k∂γ,

J0(z) = βγ + 1/2
√
2(k − 2)∂Φ,

J̄−(z̄) = β̄,

J̄0(z̄) = β̄γ̄ + 1/2
√
2(k − 2)∂Φ,

J̄+(z̄) = β̄γ̄2 +
√
2(k − 2)γ̄∂Φ+ k∂γ̄. (4.10)

(b) A level (k+2) invariance coming from the string propa-
gation on S3. The conserved currents are Jqsu(2) and J̄

q
su(2).

The WS field theoretical realization of these currents is
given by the level (k + 2) WZW su(2) model [26].

(c) A u(1)20×ū(1)20 invariance coming from the torus T 20.
This symmetry is generated by 20 U(1) Kac–Moody cur-
rents J iu(1); i = 1, . . . , 20.
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B WS Virasoro symmetry

This symmetry, which splits into holomorphic and anti-
holomorphic sectors, is given by the Suggawara construc-
tion using quadratic Casimirs of the previous WS affine
Kac–Moody algebras. For the holomorphic sector, the WS
Virasoro currents of a bosonic string on AdS3 × S3 × T 20

are
(a) String on AdS3:

TWS
sl(2) =

1
(k − 2) [(J

0
sl(2))

2 − (J1
sl(2))

2 − (J2
sl(2))

2]. (4.11)

(b) String on S3:

TWS
su(2) =

1
(k + 2)

[(J0
su(2))

2 + (J1
su(2))

2 + (J2
su(2))

2]. (4.12)

(c) String on T 20:

TWS
u(1) =

20∑
i=1

[J iu(1)]
2
. (4.13)

Similar quantities are also valid for the antiholomorphic
sector of the conformal invariance. Note that the total
WS energy momentum tensor TWS

tot is given by the sum of
TWS
sl(2), T

WS
su(2) and T

WS
u(1), (4.11), (4.12) and (4.13).

In the case of a superstring propagating on AdS3×S3×
T 4, the above conserved currents are slightly modified
by the adjunction of extra terms due to contributions of
WS fermions. If we denote by ΨAsl(2), Ψ

a
su(2) and Ψ

i
u(1) the

AdS3, S
3 and T 4 fermions, the WS theory has a N = 1

superconformal theory generated by

T (z) =
1
k
[(JAsl(2)Jsl(2),A − ΨAsl(2)∂Ψsl(2),A)

+(Jasu(2)Jsu(2),a − Ψasu(2)∂Ψsu(2),a)]

+1/2
4∑
i=1

(J iu(1)J
i
u(1) − Ψ iu(1)∂Ψ

i
u(1)),

G(z) =
2
k

[
ΨAsl(2)Jsl(2),A − i

3k
εABCΨ

A
sl(2)Ψ

B
sl(2)Ψ

C
sl(2)

]

+
2
k

[
Ψasu(2)Jsu(2),a − i

3k
εabcΨ

a
su(2)Ψ

b
su(2)Ψ

c
su(2)

]

+
4∑
i=1

Ψ iu(1)∂J
i
u(1). (4.14)

Note that to get a space-time supersymetric vacuum, one
should enhance the previous N = 1 superconformal WS
invariance to a N = 2 conformal symmetry [27]. This re-
quires the existence of a conserved U(1) current in the
world sheet theory under which G splits in two parts G+

and G− with charges +1 and −1, respectively. Skipping
the details and denoting by G±

r the modes of the G
±(z)

N = 2 fermions currents, the N = 2 U(1) superconformal
algebras read

[G−
r , G

+
s ] = 2Lr+s − (r − s)Jr+s
+ (c/3)(r2 − 1/4)δr+s,0,

[Ln, Lm] = (n−m)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Ln, G±
r ] =

(n
2

− r
)
G±
n+r,

[Ln, Jm] = −mJm+n,

[Jm, Jn] =
c

3
mδm+n,0,

[Jn, G±
r ] = ±G±

n+r, (4.15)

where the r and s modes take half odd integer values for
the Neveu–Schwarz (NS) sector and integer ones for the
Ramond (R) sector. Before going ahead we would like to
make a pause in order to give some relevant features of
these algebras. This pause is motivated by the two follow-
ing items. First the N = 2 NS and R conformal algebras
have a spectral flow which we want to use in order to
complete the study of Sect. 2 on FSS by giving a new re-
sult. Second space-time symmetry of the superstring on
AdS3 × S3 × T 4 has a N = 4 superconformal invariance
which has a spectral flow of the same nature as for N = 2
U(1) conformal invariance. Like for the FSS case, the spec-
tral flow of the N = 2 and N = 4 conformal invariances
may also be used to study RdTS supersymmetry.

5 FSS and spectral flow

In Sect. 2, we have defined FSS as a hidden finite dimen-
sional invariance which survives after integrable deforma-
tions of critical models such as the thermal deformation
of ZN models; see (2.11) and (2.12). There, we exposed a
method for deriving FSS algebras from parafermionic in-
variance. In the present section we want to complete the
study of Sect. 2 by giving a new way for obtaining FSS
using topological field theory ideas [28]. This method is
based on using an appropriate choice of the parameter η
of the spectral flow of N = 2 and N = 4 superconformal
theories. We will also take the opportunity in analysing
the spectral flow of N = 2 and N = 4 conformal symme-
tries to make a comment on the recent proposal of [29],
where a new construction of fractional supersymmetric al-
gebras was derived by using infinite dimensional modules
of Lie algebras.
For a start, recall that due to boundary conditions of

fermions, the 2-dimensional N = 2 (N = 4) supercon-
formal algebra has two sectors: the Neveu–Schwarz (NS)
sector and Ramond (R) sector. These two sectors are not
completely independent since they may be related by a
continuous spectral flow as shown here:

UθLnU
−1
θ = Ln + θJn + c/6θ2δn,0,

UθJnU
−1
θ = Jn + c/3θδn,0,

UθG
+
r U

−1
θ = G+

r+θ,

UθG
−
r U

−1
θ = G−

r−θ, (5.1)
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for N = 2 theories, and

T 3
n(η) = T

3
n(0)− ηkp

2
δn,0,

T±
n±η(η) = T

±
n (0),

Q1
n+n/2(η) = Q

1
n(0),

Q2
n−η/2(η) = Q

2
n(0),

Ln(η) = Ln(η)− ηT 3
n(0) + η

2
(
kp

4

)
δn,0, (5.2)

for N = 4 superconformal ones. The variable η is the
parameter of the spectral flow. Equations (5.1) and (5.2)
mean that 2-dimensional N = 2 (N = 4) superconfor-
mal algebras then have a continuous one parameter sector
interpolating between the NS and R algebras. This in-
terpolating sector is generated by mode operators G±

r±η
and Ḡ±

r±η carrying shifted values of the L0 and the U(1)
charge operators. For a generic value of η, the commuta-
tion relations of the N = 2 superconformal algebra in two
dimensions read

{G+
r+ηḠ

−
s−η} = 2Lr+s − (r − s+ 2η)Jr+s

+(c/3)((r + η)2 − 1/4)δr+s,0,
[Ln, Lm] = (n−m)Lm+n +

c

12
m(m2 − 1)δm+n,0,

[Ln, G±
r±η] =

(n
2

− r ∓ η
)
G±
n+r±η,

[Ln, Jm] = −mJm+n,

[Jm, Jn] =
c

3
mδm+n,0,

[Jn, G±
r+η] = ±G±

n+r+η,

{G+
r+ηḠ

+
s−η} = 0,

{G−
r+ηḠ

−
s−η} = 0. (5.3)

Similar equations may be written down for theN = 4 case.
Equations (5.3) define a continuous one family parameter
superconformal algebra to which we shall refer below as
the η sector and we denote it [(1−2η)NS, 2ηR]. For η = 0,
one discovers the NS algebra and for η = 1/2 one gets the
R algebra. For η ranging between zero and 1/2, one has the
twisted sector. The [(1−2η)NS, 2ηR] twisted conformal al-
gebra plays a crucial role in topological field theories [28,
30] and allows one to make spectacular transformations
such as modifying the spins of the WS field operators by
making appropriate choices of η. Taking the spectral pa-
rameter η = 1/2, a fermion transforms into a boson (scalar
or vector) while taking η = 1/k, k > 2; it becomes a WS
parafermion of spin (1± η) depending on the U(1) charge
of the initial fermion. Putting back η = 1/k into (5.3), one
gets amongst others

2P−1 = {G+
−(k−1)/k, G

−
−1/k}+{G+

−1/k, G
−
−(k−1)/k}, (5.4)

together with

0 = {G±
−1/k, G

±
−1/k},

0 = {G±
−(k−1)/k, G

±
−(k−1)/k}. (5.5)

Now comparing these relations with (2.15), which we ob-
tained by a thermal deformation of the Zk parafermionic
invariance, one discovers that they are quite similar. Equa-
tion (5.4) gives just a linearization form of FSS which co-
incides with (2.15) by setting k = 3. Moreover (5.5) show
that G±

−1/k are anticommuting operators in agreement
with the result of [31]. Furthermore starting from (5.4)
and (5.5) and following the reasoning of Sect. 2 which led
to the derivation of (2.15), one sees that it is possible to
reinterpret the minus charge carried by G−

(1−k)/k as a Zk
charge. So G−

(1−k)/k may be viewed as a composite op-
erator given by the product of (k − 1) and G+

−1/k. This
property is also supported by the fact that the N = 2
superconformal currents have mode expansion operators
with twisted values. We have

G±(z1)Φm(z2) =
∑

z
n−1∓p/k
12 G±

−n±(p±1)/kΦm(z2). (5.6)

Using these modes operators, one may write for k = 3 the
following relations

G−
− 2

3
= G+

− 2
3
G+

0 . (5.7)

The spectral flow of N = 2 superconformal theories gives
then another way to build FSS algebras. In this regard,
it is interesting to note that this spectral flow analysis
might also be used to rederive the so-called FSUSY alge-
bras considered recently in [29]. We suspect that the frac-
tional quantum numbers considered in [29] when deriving
FSUSY from special Verma modules of finite dimensional
Lie algebras g could be rederived by taking fractional val-
ues of the spectral parameters η of the corresponding Kac–
Moody algebra ĝ. Recall in passing that under the spectral
flow, the step generators Jαn and the Cartan ones H

i
n of ĝ

transform as

Jαn → Jαn+ηv.α,

Hi
n → Hi

n + kηv
iδn,0, (5.8)

where α are the roots of ĝ and v is a weight vector.
This transformation shifts the eigenvalues of theHi

n’s Car-
tan charge operators of ĝ. By an appropriate choice of
the free parameters in the shifted weight (2kη/α2)αivi of
(2/α2)αiHi

0, one recovers the fractionality property of the
quantum numbers used in the construction of FSUSY al-
gebras [29]. This issue will be exhibited in more detail
when we have a future occasion [32]. Now we turn to our
main topic.

6 Space-time invariance

To analyze the space-time infinite dimensional symmetries
on the boundary of AdS3, one may follow the same strat-
egy that we have used for the study of WS invariances.
First identify the space-time affine Kac–Moody symme-
tries and then consider the space-time conformal invari-
ance and eventually the Casimirs of higher ranks. In this
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section we shall simplify a little bit the analysis of space-
time invariance and focus our attention on the conformal
symmetry on ∂(AdS3). Some specific features of space-
time Kac–Moody symmetries will also be given in due
time.
We begin by noting that space-time infinite invariances

on the boundary of AdS3 are intimately linked to the
WS ones. For the case of a superstring propagating on
AdS3×S3×T 4, we have already shown that there are var-
ious kinds of WS symmetries coming from the propagation
on AdS3, S

3 and T 4 respectively. In the φ infinite limit,
we want to show that one may use these WS symmetries
to build new space-time ones.

6.1 Conformal invariances

First of all, note that the global part of the WS SO(1, 2)×
¯SO(1, 2) affine invariance of a bosonic string on AdS3,

generated by Jq0 and J̄
q
0 ; q = 0,±1, may be realized in dif-

ferent ways. A tricky way, which turns out to be crucial in
building space-time conformal invariance, is given by the
Wakimoto realization [22]. Classically, this representation
reads in terms of the local coordinates (Φ, γ, γ̄)

J0
0 = γ∂/∂γ − 1/2∂/∂γ,

J−
0 = ∂/∂γ,

J+
0 = γ2∂/∂γ − γ∂/∂Φ− e−2Φ∂/∂γ. (6.1)

Similar relations are also valid for J̄q0 ; they are obtained
by substituting γ by γ̄. Quantum mechanically, the charge
operators Jq0 and J̄

q
0 are given in terms of the Laurent

mode operators of the quantum fields Φ, γ, γ̄, β and β̄ by
using (4.10) and performing the Cauchy integrations

Jq0 =
∫
dz
2iπ
Jq(z),

J̄q0 =
∫
dz̄
2iπ
J̄q(z). (6.2)

To build the space-time conformal invariance on the AdS3
boundary, we proceed by the following steps. First sup-
pose that there exists really a conformal symmetry on the
boundary of AdS3 and denote the space-time Virasoro
generators by Ln and L̄n, n∈Z. The Ln and L̄n, which
should not be confused with the WS conformal mode gen-
erators, obviously satisfy the left and right Virasoro alge-
bras. We can write

[Ln, Lm] = (n−m)Ln+m + c/12n(n2 − 1)δn+m,

[L̄n, L̄m] = (n−m)L̄n+m + c̄/12n(n2 − 1)δn+m,

[Ln, L̄m] = 0. (6.3)

The second step is to solve these equations by using the
string WS fields (Φ, γ, γ̄) on AdS3. To do so, it is conve-
nient to divide the above equations into two blocks. The
first block corresponds to setting n = 0,±1 in the gener-
ators Ln and L̄n of (6.3). It describes the anomaly free
projective subsymmetry the Virasoro algebra. The second

block concerns the generators associated with the remain-
ing values of n.
On the boundary of AdS3 obtained by taking the infi-

nite limit of the Φ field, one solves the projective subsym-
metry by the natural identification of Lq and L̄q; q = 0,±1
with the zero modes of the WS so(1, 2)×s̄o(1, 2) affine in-
variance. In other words we have

Lq = −
∫
dz
2iπ
Jq(z) = −Jq0 ; q = 0,±1,

L̄q =
∫
dz̄
2iπ
J̄q(z) = −J̄q0 ; q = 0,±1. (6.4)

Note that on the AdS3 boundary, viewed as a complex
plane parameterized by (γ, γ̄), the charge operators J−

0
(L−1) and J̄−

0 (L̄−1) taken in the Wakimoto representation
coincide respectively with the translation operators P−
and P̄+:

P− = L− = ∂/∂γ,
P+ = L̄− = ∂/∂γ̄. (6.5)

Equations (6.4) and (6.5) are interesting; they establish a
link between the L− and L̄− constants of motion of the
boundary conformal field theory on AdS3 on the one hand
and the P−(= P ) and the P+(= P̄ ) translation generators
of the ST extension of the so(1, 2) algebra on the other
hand. We will turn to these relations in the discussion of
Sect. 7.
To get the rigorous solution of the remaining Virasoro

charge operators Ln and L̄n, one has to work hard. This is
a lengthy and technical calculation which has been done
in [10] in connection with the study of the D1/D5-brane
system. Later on we shall give some indications on this
method; for the time being we shall use an economic path
to work out the solution. This is a less rigorous but tricky
way to get the same result. This method is based on try-
ing to extend the Ln and L̄n;n = 0,±1 projective solution
to arbitrary integers n using properties of the string WS
fields near the boundary, dimensional arguments and sim-
ilarities with the photon vertex operator in three dimen-
sions. Indeed using the holomorphic property of γ and γ̄
(4.9) as well as space-time dimensional arguments,

[γ] = −1; J0
sl(2) = 0,

J−
sl(2) = 1; J+

sl(2) = −1, (6.6)

it is not difficult to check that the following Ln(L̄n) ex-
pressions are good candidates:

Ln =
∫
dz
2iπ

[
a0γ

nJ0
sl(2) − a−

2
γn+1J−

sl(2)

+
a+
2
γn−1J+

sl(2)

]
, (6.7)

and a similar relation for L̄n. To get the ai coefficients,
one needs to impose constraints which may be obtained
by the using results of a BRST analysis in QED in three
dimensions. Following [9], the right constraints one has to
impose on the ai’s are
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na0 + (n+ 1)a− + (n− 1)a+ = 0,
J0γ − (1/2)J−γ2 − (1/2)J+ = 0. (6.8)

The solution of the first constraint of these equations re-
producing the projective generators (6.4) is as follows:

a0 = (n2 − 1),
a− = n(n− 1),
a+ = n(n+ 1). (6.9)

Moreover using the second constraint of (6.8) to express
J+
sl(2)(z) in terms of J

0
sl(2)(z) and J

−
sl(2)(z), then putting

this back into (6.7), we find

Ln =
∫
dz
2iπ
[−(n+ 1)γnJ0

sl(2) + nγ
n+1J−

sl(2)]. (6.10)

Equations (6.4) and (6.10) define the space-time Virasoro
algebra on the boundary of AdS3.

6.2 Comments

Having build the Ln space-time Virasoro generators, one
may be interested in determining the space-time energy
momentum tensors T (γ) and T̄ (γ̄) of the BCFT on AdS3.
It turns out that the right form of the space-time energy
momentum tensor depends moreover on auxiliary complex
variables (y, ȳ) so that the space-time energy momentum
tensor has now two arguments; i.e. T = T (y, γ) and T̄ =
T̄ (ȳ, γ̄). Following [10], T (y, γ) and T̄ (ȳ, γ̄) read

T (y, γ) =
∫
dz
2iπ

[
∂yJ(y, γ)
(y − γ)2 − ∂2

yJ(y, γ)
(y − γ)

]
,

T̄ (ȳ, γ̄) =
∫
dz̄
2iπ

[
∂ȳJ(ȳ,γ̄)

(ȳ − γ̄)2 − ∂2
ȳJ(ȳ, γ̄)
(ȳ − γ̄)

]
, (6.11)

where the currents J(y, γ) and J(ȳ, γ̄) are given by

J(y, γ) = −J+(y, γ) = 2yJ0(γ)− J+(γ)− y2J−(γ).
(6.12)

In connection with these equations, it is interesting to note
that the conserved currents Jq(y, γ) and Jq(ȳ, γ̄) are re-
lated to the WS affine Kac–Moody ones on AdS3 as fol-
lows:

J+(y, γ) = e−yJ
−
0 J+(γ)eyJ

−
0

= J+(γ)− 2yJ0(γ) + y2J−(γ),

J0(y, γ) = e−yJ
−
0 J0(γ)eyJ

−
0

= J0(γ)− yJ−(γ) = −1
2
∂zJ

+(y, γ),

J−(y, γ) = e−yJ
−
0 J−(γ)eyJ

−
0

= J−(γ) =
1
2
∂2
zJ

+(y, γ). (6.13)

and analogous equations for Jq(ȳ, γ̄). Putting (6.12) back
into (6.11) and expanding in a power series of γ/y, one

discovers the Ln space-time Virasoro generators given by
(6.10). The second comment we want to make concerns
the building of space-time affine Kac–Moody symmetries
out of the WS ones. Staring from WS conserved currents
EaWS(z), which may be thought of as J

q
sl(2)(z), and going

to the boundary of AdS3, the corresponding space-time
affine Kac–Moody currents Easpace-time(y, γ) read

Easpace-time(y, γ) =
∮
dz
2iπ

[
Eaws(z)
(y − γ(z))

]
. (6.14)

Expanding this equation in powers of y/γ or γ/y, one gets
the space-time affine Kac–Moody modes:

Ea,space-time
n =

∮
dz
2iπ
[EaWS(z)γ

n]. (6.15)

The third comment we want to make concerns super-
strings on AdS3 × S3 × T 4. In addition to the bosonic
sector, there are moreover contributions coming from the
WS fermions ψWS(z). On the AdS3 space for which the
WS fermions ψqWS(z), q = 0,±, transform in the SO(1, 2)
adjoint, the total level k SO(1, 2) currents Jqsl(2),Total(z)
now have two contributions: a level (k+2) bosonic current
Jqsl(2),Bose(z) and a level (-2) fermionic current J

q
sl(2),Fermi

(z). The same construction may also be made for both S3

and T 4. Note finally that in the limit that φ goes to infin-
ity, the space-time conformal symmetry of a superstring
propagating on AdS3 ×S3 × T 4 forms a N = 4 conformal
invariance.

7 Discussion and conclusion

So far, we have learned that on AdS3×Nd may live various
boundary conformal field theories depending on the choice
of the d-dimensional compact manifold Nd. In the case of
critical models of (super-) strings propagating on AdS3 ×
Nd, we have studied two examples:

(i) Nd is given by the T 23 torus;
(ii) Nd is given by S3 × T 4.

The first example describes a bosonic BCFT while the
second one describes a N = 4 BCFT. One may also con-
sider other choices of Nd and build other BCFT’s.
If one forgets about the string dynamics as well as the

nature of the compact manifold N and just retains that
on ∂(AdS3) lives a conformal structure, one may consider
its highest weight representations, which read in general

[L0, Ψh,h̄] = hΨh,h̄,

[Ln, Ψh,h̄] = 0; n ≥ 1,
[L̄0, Ψh,h̄] = h̄Ψh,h̄,

[L̄n, Ψh,h̄] = 0; n ≥ 1,
[cI, Ψh,h̄] = cΨh,h̄. (7.1)

In these relations, the Ψh,h̄’s are conformal field operators
living on ∂(AdS3); their corresponding Virasoro primary
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states |h, h̄〉 are given by |h, h̄〉 = Ψh,h̄(0, 0)|0〉. A priori
the central charge c and the conformal weights h and h̄
of these representations are arbitrary. However, requiring
unitary conditions, the parameters c, h and h̄ are subject
to constraints which become stronger if one imposes ex-
tra symmetries, such as supersymmetry or parafermionic
invariance. Under appropriate assumptions, one may also
end with a finite closed set {Ψhi,h̄i

}, i = 1, 2, ..., of confor-
mal field operators; i.e.

[Ψhi,h̄i
][Ψhj ,h̄j

] = Ckij [Ψhk,h̄k
], (7.2)

where [Ψhi,h̄i
] stands for conformal blocks, [F ][G] for the

OPE, the operator product expansion, and where the Ckij ’s
are the structure constants of the fusion algebra.
Having these details in mind, one may also build the

field descendants Ψ(h+n,h̄+n̄) from the Ψh,h̄ primary ones
as follows:

Ψ(h+n,h̄+n̄) =
∑

n=
∑

αini
n̄=

∑
βjnj

λ{αi}{βj}(ΠiLαi−ni
)(ΠjL̄

βj
−nj
)Ψh,h̄,

(7.3)
where the αi’s and βj ’s are positive integers and λαβ are
C-numbers which we use to denote the collective coeffi-
cients λ{αi}{βj} of the decomposition (7.2). They satisfy
the following relations:

[L0, Ψ(h+n,h̄+n̄)] = (h+ n)Ψ(h+n,h̄+n̄),

[L±, Ψ(h+n,h̄+n̄)] = a±(h, n)Ψh±n,h̄±n̄,

[L̄0, Ψ(h+n,h̄+n̄)] = (h̄+ n̄)Ψh+n,h̄+n̄,

[L̄±, Ψ(h+n,h̄+n̄)] = ā±(h̄, n̄)Ψh±n,h̄±n̄, (7.4)

where a±(h, n) and ā±(h̄, n̄) are normalization factors.
Making an appropriate choice of the λαβ coefficients and
taking the a±(h, n) and ā±(h, n̄) coefficients as given by

a−(h, n) =
√
(2h+ n)(n+ 1),

a+(h, n) =
√
(2h+ n− 1)n, (7.5)

one can get the two so(1, 2) modules used in building
RdTS supersymmetry. Note that the descendant fields
Ψh+n,h̄+n̄ are also eigenfunctions of the spin (L0 − L̄0)
and conformal scale (L0 + L̄0) operators of eigenvalues
s = [(h− h̄)+ (n− n̄)] and ∆ = [(h+ h̄)+ (n+ n̄)] respec-
tively. Following the analysis of Sect. 2 and using confor-
mal fields fusion rules as well as the mode expansion of the
Ψh,h̄ conformal field operator, in particular developments
similar to (2.3), (2.4) and (2.8), one can build conserved
charge operators carrying fractional values and work out
the corresponding generalized supersymmetric algebra.
On the boundary of AdS3, they may equally well live

other structures such as affine symmetries and supercon-
formal invariances going beyond the usual bosonic ones.
Some of these structures were discussed in some detail
throughout Sects. 4, 5 and 6; in particular those struc-
tures with direct relevance to the present study, namely
the conformal structures having N = 2 and N = 4 super-
symmetry. Using the spectral flows (5.1) and (5.2) of the

N = 2 and N = 4 conformal algebras given by (4.15) and
(5.3), the Wakimoto realization of the Sl(2, R) affine Kac–
Moody symmetry and topological field theoretical ideas,
we have shown by an explicit analysis that here also RdTS
supersymmetry may be interpreted as a specific deforma-
tion of the boundary conformal invariance on AdS3, show-
ing once more that RdTS invariance has much to do with
the conformal structure on ∂AdS3.
We conclude this study by saying that the RdTS ex-

tension of Poincaré invariance in (1 + 2) dimensions we
studied in this paper is a special kind of FSS algebra. Like
for FSS invariances, the RdTS generalized algebra may
also be viewed as a residual symmetry of a boundary con-
formal invariance living on (1 + 2) space time manifolds.
The RdTS supersymmetry we have described is a special
FSS because it is related to a deformation of the space-
time boundary conformal invariance on AdS3.
The explicit analysis of this paper has been made plau-

sible due to the particular properties of the AdS3 geome-
try:

(a) the AdS3 manifold carries naturally a so(1, 2) affine
invariance which has various realization ways;

(b) the Wakimoto representation of the SO(1, 2) affine
symmetry which on one hand relates its zero mode to
the projective symmetry of a BCFT on AdS3 and on
the other hand links the L− and L̄− to the translation
operators on ∂AdS3;

(c) the correspondence between WS and space-time sym-
metries which plays a crucial role in analysing the var-
ious kinds of symmetries living on ∂AdS3.

Finally, we would like to note that this study might
find a natural application in FQH systems formulated as
an effective Chern–Simon gauge theory. In this approach,
the physics in the bulk is roughly speaking described by
a (1 + 2)-dimensional U(1)n gauge model, while the edge
excitations of FQH liquids are described by a boundary
conformal field theory. We plan to extend the results of
this paper to the case of FQH droplets in a future work.
Preliminary results in this direction were given in [32].
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